Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114053, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578824

RESUMEN

In the search for much-needed new antibacterial chemical matter, a myriad of compounds have been reported in academic and pharmaceutical screening endeavors. Only a small fraction of these, however, are characterized with respect to mechanism of action (MOA). Here, we describe a pipeline that categorizes transcriptional responses to antibiotics and provides hypotheses for MOA. 3D-printed imaging hardware PFIboxes) profiles responses of Escherichia coli promoter-GFP fusions to more than 100 antibiotics. Notably, metergoline, a semi-synthetic ergot alkaloid, mimics a DNA replication inhibitor. In vitro supercoiling assays confirm this prediction, and a potent analog thereof (MLEB-1934) inhibits growth at 0.25 µg/mL and is highly active against quinolone-resistant strains of methicillin-resistant Staphylococcus aureus. Spontaneous suppressor mutants map to a seldom explored allosteric binding pocket, suggesting a mechanism distinct from DNA gyrase inhibitors used in the clinic. In all, the work highlights the potential of this platform to rapidly assess MOA of new antibacterial compounds.


Asunto(s)
Antibacterianos , Girasa de ADN , Escherichia coli , Inhibidores de Topoisomerasa II , Inhibidores de Topoisomerasa II/farmacología , Girasa de ADN/metabolismo , Girasa de ADN/genética , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Transcripción Genética/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Pruebas de Sensibilidad Microbiana
2.
Cell Chem Biol ; 31(4): 760-775.e17, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38402621

RESUMEN

Candida species are among the most prevalent causes of systemic fungal infections, which account for ∼1.5 million annual fatalities. Here, we build on a compound screen that identified the molecule N-pyrimidinyl-ß-thiophenylacrylamide (NP-BTA), which strongly inhibits Candida albicans growth. NP-BTA was hypothesized to target C. albicans glutaminyl-tRNA synthetase, Gln4. Here, we confirmed through in vitro amino-acylation assays NP-BTA is a potent inhibitor of Gln4, and we defined how NP-BTA arrests Gln4's transferase activity using co-crystallography. This analysis also uncovered Met496 as a critical residue for the compound's species-selective target engagement and potency. Structure-activity relationship (SAR) studies demonstrated the NP-BTA scaffold is subject to oxidative and non-oxidative metabolism, making it unsuitable for systemic administration. In a mouse dermatomycosis model, however, topical application of the compound provided significant therapeutic benefit. This work expands the repertoire of antifungal protein synthesis target mechanisms and provides a path to develop Gln4 inhibitors.


Asunto(s)
Aminoacil-ARNt Sintetasas , Antifúngicos , Animales , Ratones , Antifúngicos/farmacología , Aminoacil-ARNt Sintetasas/genética , Candida albicans , Relación Estructura-Actividad
3.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38052426

RESUMEN

Microbial natural products are specialized metabolites that are sources of many bioactive compounds including antibiotics, antifungals, antiparasitics, anticancer agents, and probes of biology. The assembly of libraries of producers of natural products has traditionally been the province of the pharmaceutical industry. This sector has gathered significant historical collections of bacteria and fungi to identify new drug leads with outstanding outcomes-upwards of 60% of drug scaffolds originate from such libraries. Despite this success, the repeated rediscovery of known compounds and the resultant diminishing chemical novelty contributed to a pivot from this source of bioactive compounds toward more tractable synthetic compounds in the drug industry. The advent of advanced mass spectrometry tools, along with rapid whole genome sequencing and in silico identification of biosynthetic gene clusters that encode the machinery necessary for the synthesis of specialized metabolites, offers the opportunity to revisit microbial natural product libraries with renewed vigor. Assembling a suitable library of microbes and extracts for screening requires the investment of resources and the development of methods that have customarily been the proprietary purview of large pharmaceutical companies. Here, we report a perspective on our efforts to assemble a library of natural product-producing microbes and the establishment of methods to extract and fractionate bioactive compounds using resources available to most academic labs. We validate the library and approach through a series of screens for antimicrobial and cytotoxic agents. This work serves as a blueprint for establishing libraries of microbial natural product producers and bioactive extract fractions suitable for screens of bioactive compounds. ONE-SENTENCE SUMMARY: Natural products are key to discovery of novel antimicrobial agents: Here, we describe our experience and lessons learned in constructing a microbial natural product and pre-fractionated extract library.


Asunto(s)
Antineoplásicos , Productos Biológicos , Productos Biológicos/química , Biblioteca de Genes , Hongos/genética , Industria Farmacéutica
4.
ACS Infect Dis ; 8(10): 2187-2197, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36098580

RESUMEN

Gram-negative bacteria are intrinsically resistant to a plethora of antibiotics that effectively inhibit the growth of Gram-positive bacteria. The intrinsic resistance of Gram-negative bacteria to classes of antibiotics, including rifamycins, aminocoumarins, macrolides, glycopeptides, and oxazolidinones, has largely been attributed to their lack of accumulation within cells due to poor permeability across the outer membrane, susceptibility to efflux pumps, or a combination of these factors. Due to the difficulty in discovering antibiotics that can bypass these barriers, finding targets and compounds that increase the activity of these ineffective antibiotics against Gram-negative bacteria has the potential to expand the antibiotic spectrum. In this study, we investigated the genetic determinants for resistance to rifampicin, novobiocin, erythromycin, vancomycin, and linezolid to determine potential targets of antibiotic-potentiating compounds. We subsequently performed a high-throughput screen of ∼50,000 diverse, synthetic compounds to uncover molecules that potentiate the activity of at least one of the five Gram-positive-targeting antibiotics. This led to the discovery of two membrane active compounds capable of potentiating linezolid and an inhibitor of lipid A biosynthesis capable of potentiating rifampicin and vancomycin. Furthermore, we characterized the ability of known inhibitors of lipid A biosynthesis to potentiate the activity of rifampicin against Gram-negative pathogens.


Asunto(s)
Antibacterianos , Oxazolidinonas , Antibacterianos/química , Antibacterianos/farmacología , Eritromicina/farmacología , Bacterias Gramnegativas/genética , Linezolid , Lípido A , Novobiocina/farmacología , Oxazolidinonas/farmacología , Rifampin/farmacología , Vancomicina/farmacología
5.
ACS Med Chem Lett ; 13(2): 284-291, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35178184

RESUMEN

Metergoline is a semisynthetic ergot alkaloid identified recently as an inhibitor of the Gram-negative intracellular pathogen Salmonella Typhimurium (S. Tm). With the previously unknown antibacterial activity of metergoline, we explored structure-activity relationships (SARs) with a series of carbamate, urea, sulfonamide, amine, and amide analogues. Cinnamide and arylacrylamide derivatives show improved potency relative to metergoline against Gram-positive bacteria, and pyridine derivative 38 is also effective against methicillin-resistant Staphylococcus aureus (MRSA) in a murine skin infection model. Arylacrylamide analogues of metergoline show modest activity against wild-type (WT) Gram-negative bacteria but are more active against strains of efflux-deficient S. Tm and hyperpermeable Escherichia coli. The potencies against WT strains of E. coli, Acinetobacter baumannii, and Burkholderia cenocepacia are also improved considerably (up to >128-fold) with the outer-membrane permeabilizer SPR741, suggesting that the ergot scaffold represents a new lead for the development of new antibiotics.

6.
Cell Chem Biol ; 29(5): 840-853.e6, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-34710358

RESUMEN

We identify a selective nanomolar inhibitor of blood-stage malarial proliferation from a screen of microbial natural product extracts. The responsible compound, PDE-I2, is a precursor of the anticancer duocarmycin family that preserves the class's sequence-specific DNA binding but lacks its signature DNA alkylating cyclopropyl warhead. While less active than duocarmycin, PDE-I2 retains comparable antimalarial potency to chloroquine. Importantly, PDE-I2 is >1,000-fold less toxic to human cell lines than duocarmycin, with mitigated impacts on eukaryotic chromosome stability. PDE-I2 treatment induces severe defects in parasite nuclear segregation leading to impaired daughter cell formation during schizogony. Time-of-addition studies implicate parasite DNA metabolism as the target of PDE-I2, with defects observed in DNA replication and chromosome integrity. We find the effect of duocarmycin and PDE-I2 on parasites is phenotypically indistinguishable, indicating that the DNA binding specificity of duocarmycins is sufficient and the genotoxic cyclopropyl warhead is dispensable for the parasite-specific selectivity of this compound class.


Asunto(s)
Antimaláricos , Productos Biológicos , Antagonistas del Ácido Fólico , Malaria , Parásitos , Animales , Antimaláricos/farmacología , Productos Biológicos/farmacología , ADN/química , Duocarmicinas , Humanos
7.
ACS Chem Biol ; 16(5): 929-942, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33974796

RESUMEN

The outer membrane of Gram-negative bacteria is a formidable permeability barrier which allows only a small subset of chemical matter to penetrate. This outer membrane barrier can hinder the study of cellular processes and compound mechanism of action, as many compounds including antibiotics are precluded from entry despite having intracellular targets. Consequently, outer membrane permeabilizing compounds are invaluable tools in such studies. Many existing compounds known to perturb the outer membrane also impact inner membrane integrity, such as polymyxins and their derivatives, making these probes nonspecific. We performed a screen of ∼140 000 diverse synthetic compounds, for those that antagonized the growth inhibitory activity of vancomycin at 15 °C in Escherichia coli, to enrich for chemicals capable of perturbing the outer membrane. This led to the discovery that liproxstatin-1, an inhibitor of ferroptosis in human cells, and MAC-0568743, a novel cationic amphiphile, could potentiate the activity of large-scaffold antibiotics with low permeation into Gram-negative bacteria at 37 °C. Liproxstatin-1 and MAC-0568743 were found to physically disrupt the integrity of the outer membrane through interactions with lipopolysaccharide in the outer leaflet of the outer membrane. We showed that these compounds selectively disrupt the outer membrane while minimally impacting inner membrane integrity, particularly at the concentrations needed to potentiate Gram-positive-targeting antibiotics. Further exploration of these molecules and their structural analogues is a promising avenue for the development of outer membrane specific probes.


Asunto(s)
Antibacterianos/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Pared Celular/efectos de los fármacos , Vancomicina/química , Acinetobacter baumannii/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Permeabilidad de la Membrana Celular , Pared Celular/metabolismo , Sinergismo Farmacológico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Ensayos Analíticos de Alto Rendimiento , Klebsiella pneumoniae/metabolismo , Lipopolisacáridos/química , Lipopolisacáridos/metabolismo , Polimixinas/química , Polimixinas/metabolismo , Pseudomonas aeruginosa/metabolismo , Quinoxalinas/química , Quinoxalinas/metabolismo , Compuestos de Espiro/química , Compuestos de Espiro/metabolismo , Vancomicina/metabolismo , Vancomicina/farmacología
8.
Org Lett ; 23(9): 3373-3378, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33861615

RESUMEN

Sulfamates and sulfamides are most often synthesized from alcohols and amines with sulfamoyl chloride, which is an unstable reagent. We have identified hexafluoroisopropyl sulfamate (HFIPS) as a bench-stable solid that reacts readily with a wide variety of alcohols, amines, phenols, and anilines under mild reaction conditions. The sole byproduct of the reaction is hexafluoroisopropanol (HFIP) and reaction products can often be isolated in high purity after an aqueous workup (optional) and removal of solvents by evaporation.

9.
Nat Commun ; 10(1): 197, 2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30643129

RESUMEN

Salmonella Typhimurium (S. Tm) establishes systemic infection in susceptible hosts by evading the innate immune response and replicating within host phagocytes. Here, we sought to identify inhibitors of intracellular S. Tm replication by conducting parallel chemical screens against S. Tm growing in macrophage-mimicking media and within macrophages. We identify several compounds that inhibit Salmonella growth in the intracellular environment and in acidic, ion-limited media. We report on the antimicrobial activity of the psychoactive drug metergoline, which is specific against intracellular S. Tm. Screening an S. Tm deletion library in the presence of metergoline reveals hypersensitization of outer membrane mutants to metergoline activity. Metergoline disrupts the proton motive force at the bacterial cytoplasmic membrane and extends animal survival during a systemic S. Tm infection. This work highlights the predictive nature of intracellular screens for in vivo efficacy, and identifies metergoline as a novel antimicrobial active against Salmonella.


Asunto(s)
Antibacterianos/farmacología , Macrófagos/microbiología , Metergolina/farmacología , Infecciones por Salmonella/tratamiento farmacológico , Salmonella typhimurium/efectos de los fármacos , Animales , Antibacterianos/uso terapéutico , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Femenino , Eliminación de Gen , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Macrófagos/inmunología , Macrófagos/ultraestructura , Metergolina/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Microscopía de Fuerza Atómica , Células RAW 264.7 , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/mortalidad , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Resultado del Tratamiento
10.
Chemistry ; 24(22): 5734-5737, 2018 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-29250863

RESUMEN

The most important resistance mechanism to ß-lactam antibiotics involves hydrolysis by two ß-lactamase categories: the nucleophilic serine and the metallo-ß-lactamases (SBLs and MBLs, respectively). Cyclobutanones are hydrolytically stable ß-lactam analogues with potential to inhibit both SBLs and MBLs. We describe solution and crystallographic studies on the interaction of a cyclobutanone penem analogue with the clinically important MBL SPM-1. NMR experiments using 19 F-labeled SPM-1 imply the cyclobutanone binds to SPM-1 with micromolar affinity. A crystal structure of the SPM-1:cyclobutanone complex reveals binding of the hydrated cyclobutanone through interactions with one of the zinc ions, stabilisation of the hydrate by hydrogen bonding to zinc-bound water, and hydrophobic contacts with aromatic residues. NMR analyses using a 13 C-labeled cyclobutanone support assignment of the bound species as the hydrated ketone. The results inform on how MBLs bind substrates and stabilize tetrahedral intermediates. They support further investigations on the use of transition-state and/or intermediate analogues as inhibitors of all ß-lactamase classes.


Asunto(s)
Ciclobutanos/química , Inhibidores de beta-Lactamasas/farmacología , beta-Lactamasas/metabolismo , beta-Lactamas/química , Catálisis , Meropenem , Imitación Molecular , Resonancia Magnética Nuclear Biomolecular , Tienamicinas/química , Inhibidores de beta-Lactamasas/química , beta-Lactamasas/química , beta-Lactamasas/clasificación
11.
Curr Opin Biotechnol ; 42: 108-117, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27116217

RESUMEN

Chemical modification of synthetic or natural product antibiotic scaffolds to expand potency and spectrum and to bypass mechanisms of resistance has dominated antibiotic drug discovery and proven immensely successful. However, the inexorable evolution of drug resistance coupled with a drought in innovation in antibiotic discovery contribute to a dearth of new drugs entering to market. Better understanding of the physicochemical properties of antibiotic chemical space is required to inform new antibiotic discovery. Innovations such as the development of antibiotic adjuvants to preserve efficacy of existing drugs together with expanding antibiotic chemical diversity through synthetic biology or new techniques to mine antibiotic producing organisms, are required to bridge the growing gap between the need for new drugs and their discovery.


Asunto(s)
Antibacterianos/aislamiento & purificación , Química Farmacéutica/métodos , Química Farmacéutica/tendencias , Descubrimiento de Drogas/métodos , Animales , Antibacterianos/uso terapéutico , Productos Biológicos/química , Productos Biológicos/aislamiento & purificación , Productos Biológicos/uso terapéutico , Humanos , Biología Sintética/métodos , Biología Sintética/tendencias
12.
Proc Natl Acad Sci U S A ; 110(42): 16808-13, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24085846

RESUMEN

The expression of penicillin binding protein 2a (PBP2a) is the basis for the broad clinical resistance to the ß-lactam antibiotics by methicillin-resistant Staphylococcus aureus (MRSA). The high-molecular mass penicillin binding proteins of bacteria catalyze in separate domains the transglycosylase and transpeptidase activities required for the biosynthesis of the peptidoglycan polymer that comprises the bacterial cell wall. In bacteria susceptible to ß-lactam antibiotics, the transpeptidase activity of their penicillin binding proteins (PBPs) is lost as a result of irreversible acylation of an active site serine by the ß-lactam antibiotics. In contrast, the PBP2a of MRSA is resistant to ß-lactam acylation and successfully catalyzes the DD-transpeptidation reaction necessary to complete the cell wall. The inability to contain MRSA infection with ß-lactam antibiotics is a continuing public health concern. We report herein the identification of an allosteric binding domain--a remarkable 60 Å distant from the DD-transpeptidase active site--discovered by crystallographic analysis of a soluble construct of PBP2a. When this allosteric site is occupied, a multiresidue conformational change culminates in the opening of the active site to permit substrate entry. This same crystallographic analysis also reveals the identity of three allosteric ligands: muramic acid (a saccharide component of the peptidoglycan), the cell wall peptidoglycan, and ceftaroline, a recently approved anti-MRSA ß-lactam antibiotic. The ability of an anti-MRSA ß-lactam antibiotic to stimulate allosteric opening of the active site, thus predisposing PBP2a to inactivation by a second ß-lactam molecule, opens an unprecedented realm for ß-lactam antibiotic structure-based design.


Asunto(s)
Resistencia a la Meticilina/fisiología , Staphylococcus aureus Resistente a Meticilina/enzimología , Proteínas de Unión a las Penicilinas/química , Acilación/fisiología , Regulación Alostérica/fisiología , Dominio Catalítico , Cefalosporinas/química , Cefalosporinas/metabolismo , Cristalografía por Rayos X , Staphylococcus aureus Resistente a Meticilina/genética , Ácidos Murámicos/química , Ácidos Murámicos/metabolismo , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/química , Peptidoglicano/metabolismo , Especificidad por Sustrato/fisiología , Ceftarolina
13.
Ann N Y Acad Sci ; 1277: 54-75, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23163477

RESUMEN

Many Gram-negative and Gram-positive bacteria recycle a significant proportion of the peptidoglycan components of their cell walls during their growth and septation. In many--and quite possibly all--bacteria, the peptidoglycan fragments are recovered and recycled. Although cell-wall recycling is beneficial for the recovery of resources, it also serves as a mechanism to detect cell-wall-targeting antibiotics and to regulate resistance mechanisms. In several Gram-negative pathogens, anhydro-MurNAc-peptide cell-wall fragments regulate AmpC ß-lactamase induction. In some Gram-positive organisms, short peptides derived from the cell wall regulate the induction of both ß-lactamase and ß-lactam-resistant penicillin-binding proteins. The involvement of peptidoglycan recycling with resistance regulation suggests that inhibitors of the enzymes involved in the recycling might synergize with cell-wall-targeted antibiotics. Indeed, such inhibitors improve the potency of ß-lactams in vitro against inducible AmpC ß-lactamase-producing bacteria. We describe the key steps of cell-wall remodeling and recycling, the regulation of resistance mechanisms by cell-wall recycling, and recent advances toward the discovery of cell-wall-recycling inhibitors.


Asunto(s)
Bacterias/metabolismo , Pared Celular/metabolismo , Bacterias/química , Proteínas Bacterianas/metabolismo , Pared Celular/química , Glicosiltransferasas/metabolismo , Bacterias Gramnegativas/química , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/química , Bacterias Grampositivas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Unión Proteica , beta-Lactamasas/metabolismo
14.
J Am Chem Soc ; 132(8): 2558-60, 2010 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-20141132

RESUMEN

The most important mode of bacterial resistance to beta-lactam antibiotics is the expression of beta-lactamases. New cyclobutanone analogues of penams and penems have been prepared and evaluated for inhibition of class A, B, C, and D beta-lactamases. Inhibitors which favor conformations in which the C4 carboxylate is equatorial were found to be more potent than those in which the carboxylate is axial, and molecular modeling studies with enzyme-inhibitor complexes indicate that an equatorial orientation of the carboxylate is required for binding to beta-lactamases. An X-ray structure of OXA-10 complexed with a cyclobutanone confirms that a serine hemiketal is formed in the active site and that the inhibitor adopts the exo envelope. An unsaturated penem analogue was also found to enhance the potency of meropenem against carbapenem-resistant MBL-producing strains of Chryseobacterium meningosepticum and Stenotrophomonas maltophilia. These cyclobutanones represent the first type of reversible inhibitors to show moderate (low micromolar) inhibition of both serine- and metallo-beta-lactamases and should be considered for further development into practical inhibitors.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Bacterias/enzimología , Inhibidores de beta-Lactamasas , beta-Lactamas/química , beta-Lactamas/farmacología , Butanonas/química , Butanonas/farmacología , Cristalografía por Rayos X , Modelos Moleculares , beta-Lactamasas/química , beta-Lactamasas/metabolismo
15.
J Org Chem ; 73(18): 6970-82, 2008 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-18710291

RESUMEN

The tendency for carbocyclic analogues of penicillins to undergo hydrate and hemiketal formation is central to their ability to function as beta-lactamase inhibitors. 2-Thiabicyclo[3.2.0]heptan-6-one-4-carboxylates with alkoxy functionality at C3 have been prepared through two complementary diastereoselective substitution reactions following a highly stereoselective chlorination with sulfuryl chloride. We have found that carbocyclic analogues with 3beta substituents favor an endo envelope conformation in solution, the solid state, and the gas phase, whereas those with 3alpha substituents adopt an exo envelope. Evidence from X-ray crystal structures and ab initio calculations suggests that an anomeric effect contributes to the large conformational preference of the tetrahydrothiophene ring that favors the C3 substituent in an axial orientation. In addition, the envelope conformation of the bicycle, which is determined by the stereochemistry of the C3 substituent, has a dramatic effect on the ability of the cyclobutanone to undergo hemiketal formation in methanol-d4.


Asunto(s)
Ciclobutanos/química , Penicilinas/química , Simulación por Computador , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/normas , Modelos Químicos , Modelos Moleculares , Conformación Molecular , Penicilinas/síntesis química , Teoría Cuántica , Estándares de Referencia , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...